Science Olympiad -- Physics Lab Notes -- 2008

Concept	Definition	Basic Equation		
	Work			
Linear Work	The act of exerting a force through a distance in the direction of the force (constant)			
Rotational Work	The act of exerting a torque through an angular displacement (fixed Axis)	W = T Δθ (T = Torque, $\Delta \theta$ = angular Displacement)		
Work done by Pressure	The act of maintaining a pressure through a volume change (Constant Pressure)			
Work done by an Electric Field	The act of moving an electric charge within an electric field. (Constant field)			
Energy				
Linear Kinetic Energy	The ability to do work because of linear motion.	KE = 0.5 m v² (v = linear velocity, m = mass)		
Rotational Kinetic Energy	The ability to do work because of rotational motion. (fixed axis)	KE_{rot} = 0.5 I ω ² (ω = angular velocity, I = moment of Inertia)		
Potential Energy	The ability to do work because of position within a force field			
Gravitational Potential Energy	The ability to do work because of position within the gravitational force field	PE = mgh (h = height w.r.t. reference)		
Spring Potential Energy	The ability to do work because of elongation or compression of a spring	$U_s = 0.5 k \Delta s^2$ (k = spring constant)		
Elect. Capacitor Potential Energy	The ability to do work because of electric charges stored in an Electric force field.	$U_q = 0.5 q^2/C$ (q = charge, C = Capacitance)		
Pressure	Potential Energy per unit volume within a fluid (liquid and / or gas / vapor)	P = F / A (P = pressure, F = force, A = area)		

Science Olympiad -- Physics Lab Notes -- 2008

Concept	Definition	Ва	asic Equation	
Ideal Gas Law	Relationship between energy stored in Ideal gas and it's temperature	PV = nRT	(P = pressure, V = volume, n = number of moles,	
		R = er	nergy to change the temp. of one	
		т	mole by one degree Kelvin,	
		1 =	temperature in degrees Kelvin)	
	Power			
Power	The rate at which work is done or energy is transformed (used or generated)	P = W/∆t	(P = power, W = work, Δt = time to do work)	
Linear Power	The rate at which work is done during linear motion	P = Fv (P =	power, F = force, v = velocity)	
Rotational Power	The rate at which work is done during rotational motion (fixed Axis)	Ρ = Τω	(P = power, T = torque, ω = angular velocity)	
Electrical Power	The rate at which electrical energy is generated or transformed to other energy	P = Vi (P = Power, V = Voltage, I = current)		
Ohmic Heating	The rate at which electrical energy is transformed to heat	$\mathbf{P} = \mathbf{i}^2 \mathbf{R} \qquad (\mathbf{I}$	P = power, I = electric current, R = electrical resistance)	
Fluid Power	The rate at which a liquid fluid does work (hydraulic)	P = Pressure x Volume flow rate (P = power)		
	Efficiency			
Efficiency	The ratio of useable energy resulting from an energy conversion to the total energy supplied for the conversion			
Efficiency of Work		$e = W_{out} / W_{in}$	(Wout = useful work out, Win = Total work input)	
Efficiency of Power		e = P _{out} / P _{in}	(P _{out} = useful power out, P _{in} = Total power input)	
Efficiency of Energy Conversion		e = E _{out} / E _{in}	(E _{out} = Useful Energy out, E _{in} = Total Energy input)	