DESIGNER GENES SAMPLE TOURNAMENT

PART ONE- GENETICS PROBLEMS

In dogs, the inheritance of hair color involves a gene (**B**) for black hair and a gene (**b**) for brown hair. A dominant (**C**) is also involved. It must be present for the color to be synthesized (made). If this gene is NOT present, a blond condition results.

Genotype	Color Deposition gene	Phenotype
BB or Bb	CC or Cc	
bb	CC or Cc	
BB or Bb	сс	
bb	сс	

For the two given genotypes, list the phenotype. Be sure to list them in the same order.

- 1. bbCC Bbcc
- 2. BBcc BbCC
- 3. BbCC BBCc
- 4. Bbcc bbCc
- 5. BBCC bbcc

DESIGNER GENES SAMPLE TOURNAMENT

PART ONE- GENETICS PROBLEMS

I In dogs, the inheritance of hair color involves a gene (B) for black hair and a gene (b) for brown hair. A dominant (C) is also involved. It must be present for the color to be synthesized (made). If this gene is NOT present, a blond condition results.

Genotype	Color Deposition gene	Phenotype
BB or Bb	CC or Cc	
bb	CC or Cc	
BB or Bb	сс	
bb	сс	

For the two given genotypes, list the phenotype. Be sure to list them in the same order.

1.	bbCC	Bbcc	brown	blond
2.	BBcc	BbCC	blond	black
3.	BbCC	BBCc	black	black
4.	Bbcc	bbCc	blond	brown
5.	BBCC	bbcc	black	blond

Examine the TRIHYBRID PUNNETT SQUARE.

Use the Gene Symbols from the Trihybrid Punnett Square when answering the questions.

	triple-het x triple-het cross									
	<u>SsYyAa</u> × <u>SsYyAa</u>									
	SYA	SYa	SyA	Sya	sYA	sYa	syA	sya	P	nenotypes:
SYA	SSYYAA	SSYYAa	SSYyAA	SSYyAa	Ssyyaa	SsYYAa	SsYyAA	SsYyAa	0	out of 64 births.
SYa	SSYYaA	SSYYaa	SSYyaA	SSYyaa	SsYYaA	SsYYaa	SsYyAa	SsYyaa	-	- normal
SyA	SSyYAA	SSyYAa	SSyyAA	SSyyAa	SsyYAA	SsyYAa	SsyyAA	SsyyAa		- albinos
Sya	SSyYaA	SSyYaa	SSyyaA	SSyyaa	SsyYaA	SsyYaa	SsyyaA	Ssyyaa	-	- anerythristic
sYA	sSYYAA	sSYYAa	sSYyAA	sSYyAa	ssYYAA	ssYYAa	ssYyAA	ssYyAa	-	- striped
sYa	sSYYaA	sSYYaa	sSYyaA	sSYyaa	ssYYaA	ssYYaa	ssYyaA	ssYyaa	-	- snow
syA	sSyYAA	sSyYAa	sSyyAA	sSyyAa	ssyYAA	ssyYAa	ssyyAA	ssyyAa		- striped-albino
sya	sSyYaA	sSyYaa	sSyyaA	sSyyaa	ssyYaA	ssyYaa	ssyyaA	ssyyaa		- striped-anery
									1	- striped-snow

- 6. How many animals have **normal** color? What genes must be present for it to be **normal**?
- 7. How many animals have **stripped** color? What genes must be present for it to be **stripped**?
- 8. How many animals are **snow**? What genes must be present for it to be **snow**?
- **9.** How many animals are **stripped snow**? What genes must be present for it to be **stripped snow**?
- **10.** What is the phenotype ratio for this trihybrid cross?

Examine the TRIHYBRID PUNNETT SQUARE.

Use the Gene Symbols from the Trihybrid Punnett Square when answering the questions.

	triple-het x triple-het cross									
	<u>SsYyAa x SsYyAa</u>									
	SYA	SYa	SyA	Sya	sYA	sYa	syA	sya	P	nenotypes:
SYA	SSYYAA	SSYYAa	SSYyAA	SSYyAa	Ssyyaa	SsYYAa	SsYyAA	SsYyAa	0	out of 64 births.
SYa	SSYYaA	SSYYaa	SSYyaA	SSYyaa	SsYYaA	SsYYaa	SsYyAa	SsYyaa	-	- normal
SyA	SSyYAA	SSyYAa	SSyyAA	SSyyAa	SsyYAA	SsyYAa	SsyyAA	SsyyAa		- albinos
Sya	SSyYaA	SSyYaa	SSyyaA	SSyyaa	SsyYaA	SsyYaa	SsyyaA	Ssyyaa	-	- anerythristic
sYA	sSYYAA	sSYYAa	sSYyAA	sSYyAa	ssYYAA	ssYYAa	ssYyAA	ssYyAa	-	- striped
sYa	sSYYaA	sSYYaa	sSYyaA	sSYyaa	ssYYaA	ssYYaa	ssYyaA	ssYyaa		- snow
syA	sSyYAA	sSyYAa	sSyyAA	sSyyAa	ssyYAA	ssyYAa	ssyyAA	ssyyAa	-	- striped-albino
sya	sSyYaA	sSyYaa	sSyyaA	sSyyaa	ssyYaA	ssyYaa	ssyyaA	ssyyaa	-	- striped-anery
									-	- striped-snow

- 6. How many animals have normal color? What genes must be present for it to be normal?27SYA
- How many animals have stripped color? What genes must be present for it to be stripped?
 9 ssYA
- 8. How many animals are snow? What genes must be present for it to be snow?3 Syyaa
- 9. How many animals are stripped snow? What genes must be present for it to be stripped snow?1 ssyyaa
- 10. What is the phenotype ratio for this trihybrid cross? 27:9:9:9:3:3:3:1

PEDIGREE 2

Examine **PEDIGREES 1-3** and answer the following questions

The shaded symbol represents the affected individuals. Half shaded are carriers

Assume that all couples are legally married. Use D for the dominant gene and d for the recessive gene. If the trait involves sex-linkage also use the X and Y chromosome symbols.

- 11. Which pedigree represents a trait that is **autosomal recessive**?
- 12. Which pedigree represents a trait that is **autosomal dominant**?
- 13. Which pedigree represents a trait that is sex-linked recessive?
- **14.** What would be the genotype for a **carrier** of an **autosomal dominant** trait?
- 15. What would be the genotype of a carrier of an autosomal recessive trait?What would be the phenotype of this individual? (dominant or recessive)

PEDIGREE 2

Examine PEDIGREES 1-3 and answer the following questions

The shaded symbol represents the affected individuals. Half shaded are carriers

Assume that all couples are legally married. Use D for the dominant gene and d for the recessive gene. If the trait involves sex-linkage also use the X and Y chromosome symbols.

- 11. Which pedigree represents a trait that is **autosomal recessive**? Pedigree 2
- 12. Which pedigree represents a trait that is **autosomal dominant**? Pedigree 3
- 13. Which pedigree represents a trait that is sex-linked recessive? Pedigree 1
- 14. What would be the genotype for a **carrier** of an **autosomal dominant** trait? There are none
- 15. What would be the genotype of a carrier of an autosomal recessive trait? DdWhat would be the phenotype of this individual? (dominant or recessive)

PART TWO - MITOSIS AND MEIOSIS

A.

B.

D.

F.

E.

PART TWO - MITOSIS AND MEIOSIS

G.

H.

J.

PART TWO- MITOSIS AND MEIOSIS

Examine Diagrams A-J and use them when answering the questions.

- 1. Examine Diagram J. What processes are illustrated here?
- 2. How many divisions are present in the entire diagram?
- **3.** What is Diagram A?
- 4. What is Diagram B?
- 5. What is Diagram C?
- **6.** What is Diagram D?
- 7. What is Diagram E?
- **8.** What is Diagram F?
- **9.** What is Diagram G?
- **10.** What is Diagram H?
- **11**. What is Diagram I?
- 12. What process is being shown in Diagrams (A-I)
- **13.** In which Diagram (A-I) would the four chromatids from a pair of chromosomes twist together to form a group of four?
- **14.** Which phase is this?
- 15. What is the process called that causes the four chromosomes to twist together?
- **16.** What is the group of 4 called?
- 17. In Diagram D, what is the process called that is splitting the cytoplasm to form the 4 cells?
- 18. At the end of what phase does this occur?
- **19-20.** Examine Diagram J. Notice that there are pieces of the blue and red chromatids that have switched chromatids. What is this called and during what phase did it occur?

PART TWO- MITOSIS AND MEIOSIS

Examine Diagrams A-J and use them when answering the questions.

- 1. Examine Diagram J. What processes are illustrated here? Mitosis and Meiosis
- 2. How many divisions are present in the entire diagram? 3 (1 mitosis and 2 meiosis)
- 3. What is Diagram A? anaphase II
- 4. What is Diagram B? prophase I
- 5. What is Diagram C? interphase I
- 6. What is Diagram D? telophase II
- 7. What is Diagram E? metaphase I
- 8. What is Diagram F? metaphase II
- 9. What is Diagram G? anaphase I
- 10. What is Diagram H? prophase II
- **11.** What is Diagram I? **telophase I**
- 12. What process is being shown in Diagrams (A-I) meiosis
- **13.** In which Diagram (A-I) would the four chromatids from a pair of chromosomes twist together to form a group of four? **B**
- 14. Which phase is this? prophase I
- 15. What is the process called that causes the four chromosomes to twist together?
- **16.** What is the group of 4 called? **synapsis tetrad**
- 17. In Diagram D, what is the process called that is splitting the cytoplasm to form the 4 cells? Cytokinesis
- **18.** At the end of what phase does this occur? **telophase**
- 19-20. Examine Diagram J. Notice that there are pieces of the blue and red chromatids that have switched chromatids. What is this called and during what phase did it occur?
 Crossing over
 Prophase I

PART 3-MOLECULAR GENETICS

DNA and RNA

List the three differences between DNA and RNA (1-3)

1.

2.

3.

M-RNA modification

- 4. What is the difference between exons and introns?
- 5. What happens to the M-RNA before it leaves the nucleus?

Types of RNA

- 6. What is the function of m-RNA?
- **7.** What is the function of t-RNA?
- **8.** What is the function of the r-RNA?
- 9. Name the two processes that make up gene expression?
- 10. Describe the difference between transcription and translation?

PART 3-MOLECULAR GENETICS

DNA and RNA

List the three differences between DNA and RNA (1-3)

- 1.. DNA is double strand and RNA is single strand (# 1-3 in any order)
- 2. DNA has deoxyribose as its sugar while RNA has ribose
- 3. DNA has thymine and RNA has Uracil

M-RNA modification

4. What is the difference between exons and introns? Exons are coding template for M RNA and non coding Interons sections between the exons

5. What happens to the M-RNA before it leaves the nucleus? It is modified by removing the introns, adding a cap to 5' end and a poly A tail to the 3' end

Types of RNA

6. What is the function of m-RNA?

Carries blueprint into the cytoplasm and serves as the template for protein synthesis

7. What is the function of t-RNA? Transfers amino acids and attaches to mRNA template at correct position to attach amino acid

8. What is the function of the r-RNA?

Major component of ribosome which allows mRNA and tRNA to connect so amino acids can connect.

9. Name the two processes that make up gene expression? **Transcription and Translation**

10. Describe the difference between transcription and translation?

Transcription produces RNA and Translation builds peptides for proteins (protein synthesis)

Examine the diagram and use the universal code in answering the following questions.

45

37

50

20

12

21

22

49

18

15

10

48

47

17

1 5 10 UUUGUCAAUCAGCAUCUGUGUGGGAGUCAC

11 15 20 CUAGUCCAGGCCCUAUAUUUGGUUUGCGGC

21 25 30 GAGAGAGGGUUCUUUUACUACCCCAAAGCA

31 35 GGUAUUGUGGAACAGUGUUGUCGUUCUGUU

41 45 UGUUCGUUGUACCAAUUGGAGAAUUAUUGU

51 AACUAG

1.1.25.21.2

1.1.2.1.1

43

11. How many nucleotides are in this section of M-RNA?

31

32

33

- **12.** How many codon are present along this section of M-RNA?
- **13.** Which codon should precede codon number 1 as the start codon?
- 14. Which amino acid is #40?
- 15. Why is there no amino acid for the last codon?

	U	UUC_ Phe UUA Leu UUG_ Leu	UCC UCA UCG	UACUAA Stop UAG Stop	UGC_UGA Stop UGG Trp	C A G	
First position	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAC Gin CAA Gin	CGU CGC Arg CGA CGG	U C A G	Third position
(5 end)	А	AUU AUC AUA AUG	ACU ACC ACA ACG	AAU Asn AAC Asn AAA Lys AAG	AGU Ser AGC Ser AGA Arg AGG	U C A G	(3 enu)
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAA GAG	GGU GGC GGA GGG_	U C A G	

Amino acid names:

Ala = alanine	GIn = glutamine
Arg = arginine	Glu = glutamate
Asn = asparagine	Gly = glycine
Asp = aspartate	His = histidine
Cys = cysteine	Ile = Isolevcine

Leu = leucine Lys = lysine Met = methionine Phe = phenylalanine Pro = proline

Ser = serine Thr = threonine Trp = tryptophan Tyr = Tyrosine Val = valine

Examine the diagram and use the universal code in answering the following questions.

11. How many nucleotides are in this section of M-RNA?

156

12. How many codon are present along this section of M-RNA?

52

13. Which codon should precede codon number 1 as the start codon ?

AUG (start codon)

14. Which amino acid is # 40 ?

Valine (from GUU)

15. Why is there no amino acid for the last codon?

UAG is a stop codon – it does not code for an amino acid but signals the end of the peptide

		U	С	А	G		
	U	UUU Phe UUC Phe UUA Leu UUG Leu	UCU UCC UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGC Cys UGA Stop UGG Trp	U C A G	
First position	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAC Gin CAA Gin	CGU CGC CGA CGG	U C A G	Third position
(5 end)	А	AUU AUC AUA AUG	ACU ACC ACA ACG	AAU Asn AAC Asn AAA Lys AAG	AGU Ser AGC Ser AGA Arg AGG	U C A G	(3 end)
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAG GIU	GGU GGC GGA GGG_	U C A G	

Amino acid names:

Ala = alanine	GI
Arg = arginine	Gl
Asn = asparagine	Gl
Asp = aspartate	Hi
Cys = cysteine	Ile

GIn = glutamine Glu = glutamate Gly = glycine His = histidine (le = Isolevcine Leu = leucine Lys = lysine Met = methionine Phe = phenylalanine Pro = proline Ser = serine Thr = threonine Trp = tryptophan Tyr = Tyrosine Val = valine

REPLICATION, TRANSCRIPTION AND TRANSLATION

DIAGRAM 1

REPLICATION, TRANSCRIPTION AND TRANSLATION

DIAGRAM 2

DIAGRAM 3

Use DIAGRAMS 1, 2, AND 3 for the following questions

- 16. Which Diagram (1, 2, or 3) shows only DNA REPLICATION?
- 17. How is Replication different in prokaryotic and eukaryotic cells?
- 18. What letter on the diagrams represents the original DNA?
- **19.** What letter on the diagram represents the leading strand?
- 20. What letter on the diagram represents the lagging strand with Okazaki fragments?
- **21**. How is the DNA read (5¢to 3¢to 5¢) and how are the DNA nucleotide added to each strand (5¢to 3¢to 5¢)?
- 22. Which Diagram (1, 2, or 3) shows only TRANSCRIPTION?
- 23. How is TRANSCRIPTION different in Prokaryotic cells than in Eukaryotic cells
- 24. Which letter on the Transcription Diagrams represents the Non-template strand of DNA?
- 25. Which letter on the Transcription Diagrams represents the Template strand of DNA?
- 26. Which letter on the Transcription Diagrams represents the newly formed RNA strand?
- 27. The remaining diagram represent all three processes. Translation takes place where in the Eukaryotic cell?
- 28. Which letter on the diagram represents the mRNA serving as the template for translation?
- 29. Which letter on the diagram represents the tRNA with an amino acid attached?
- **30**. Which letter on the diagram represents the ribosome that is moving along the template mRNA?

Use DIAGRAMS 1, 2, AND 3 for the following questions

16. Which Diagram (1, 2, or 3) shows only DNA REPLICATION?

17. How is Replication different in prokaryotic and eukaryotic cells? Prokaryotes have circular DNA and replication is continuous in cytoplasm ó one replication bubble, Eukaryotes have linear DNA and replication takes place in nucleus as part of cell cycle with many replication bubbles.

18. What letter on the diagrams represents the original DNA?

- **19.** What letter on the diagram represents the leading strand? **B**
- 20. What letter on the diagram represents the lagging strand with Okazaki fragments? C
- 21. How is the DNA read (5¢to 3¢or 3' to 5') and how are the DNA nucleotide added to each strand (5'to 3' or 3¢to 5¢)?
- **22.** Which Diagram (1, **2**, or 3) shows only TRANSCRIPTION?

23. How is TRANSCRIPTION different in Prokaryotic cells than in Eukaryotic cells. mRNA in Eukaryotes has introns so it must be modified to remove them plus a cap and tail are added. Eukaryotes have monocistronic mRNA while prokaryotes have polycistronic mRNA and are controlled by operons.

- 24. Which letter on the Transcription Diagrams represents the Non-template strand of DNA? A
- 25. Which letter on the Transcription Diagrams represents the Template strand of DNA? E
- 26. Which letter on the Transcription Diagrams represents the newly formed RNA strand? D
- 27. The remaining diagram represent all three processes. Translation takes place where in the Eukaryotic cell? cytoplasm at the ribosome
- 28. Which letter on the diagram represents the mRNA serving as the template for translation? F
- 29. Which letter on the diagram represents the tRNA with an amino acid attached? E
- 30. Which letter on the diagram represents the ribosome that is moving along the template mRNA? G

PART FOUR – BIOTECHNOLOGY

1-9. Put the numbers of the following activities in the proper order

- 1. Cloning desired DNA and Vectors
- 2. Analyzing DNA by cutting fragments and separating by Electrophoresis
- 3. Cutting DNA with Restriction Enzymes
- 4. Inserting DNA into Vector as Plasmid
- 5. Identifying desired DNA
- 6. Inserting Vector into Host Cell as bacterium
- 7. Storing clones in DNA Libraries
- 8. Connecting DNA pieces with Ligase
- 9. Identifying cloned genes with Radioactive Probes
- 10. Why are plasmids used as vectors?
- 11. What is the role of restriction enzymes?
- **12.** What is hybridization?
- 13. What enzyme facilitates the reattachment of pieces of DNA?
- 14. What is the role of Restriction Maps?
- 15. What are transgenic organisms?

PART FOUR – BIOTECHNOLOGY

- 1-9. Put the numbers of the following activities in the proper order
 - 1. Cloning desired DNA and Vectors
 - 2. Analyzing DNA by cutting fragments and separating by Electrophoresis
 - 3. Cutting DNA with Restriction Enzymes
 - 4. Inserting DNA into Vector as Plasmid
 - 5. Identifying desired DNA
 - 6. Inserting Vector into Host Cell as bacterium
 - 7. Storing clones in DNA Libraries
 - 8. Connecting DNA pieces with Ligase
 - 9. Identifying cloned genes with Radioactive

Correct Order is 5 3 4 8 6 1 7 9 8

10. Why are plasmids used as vectors? They are circular DNA from bacteria easily replicated and not part of the bacterium genome.

11. What is the role of restriction enzymes? enzymes used to cut DNA at a particular spot – there are many kinds which allow specific cutting – originate from bacteria and used as defense against viruses.

12. What is hybridization? the process of putting different pieces of DNA together

13. What enzyme facilitates the reattachment of pieces of DNA? DNA ligase

14. What is the role of Restriction Maps? used in determining the location of genes on a chromosome and making a map of restriction sites

15. What are transgenic organisms? organism that have DNA from another organism

For each of the following types of test, choose the best technique to accomplish the task.

16.	cut pieces of DNA into fragments	A. RFLP
17.	separate fragments of DNA or Protein using	B. PCR
10	alone a very small sample of DNA	C. Electrophoresis
10.	cione a very sman sample of DNA	D. Radioactive Probe
19.	transfer DNA from gel to paper or membrane	E. Southern Blot
20.	identify a DNA section from a DNA Library	F. Restriction enzymes

21. Construct a restriction map of a linear fragment of DNA, using the following data. Your map should indicate the relative positions of the restriction sites along with distances from the ends of the molecule to the restriction sites and between restriction sites

DNA	Sizes of Fragments (bp)
uncut DNA	10,000
DNA cut with EcoRI	8000, 2000
DNA cut with BamHI	5000, 5000
DNA cut with EcoRI + BamHI	5000, 3000, 2000

Restriction Map:

The following gel was produced by the DNA sequencing.	ddATP ddTTP ddCTP ddGTP	
22Sequence from the gel	_ Give the DNA	
23	Deduce the	

For each of the following types of test, choose the best technique to accomplish the task.

16.	cut pieces of DNA into fragments F	A. RFLP
17.	separate fragments of DNA or Protein using	B. PCR
18	clone a very small sample of DNA R	C. Electrophoresis
10.	transfer DNA from gal to paper or membrane	D. Radioactive Probe
19.	identifies DNA nom get to paper of memorane E	E. Southern Blot
20.	identify a DNA section from a DNA Library D	F. Restriction enzymes

21. Construct a restriction map of a linear fragment of DNA, using the following data. Your map should indicate the relative positions of the restriction sites along with distances from the ends of the molecule to the restriction sites and between restriction sites

DNA	Sizes of Fragments (bp)
uncut DNA	10,000
DNA cut with EcoRI	8000, 2000
DNA cut with BamHI	5000, 5000
DNA cut with EcoRI + BamHI	5000, 3000, 2000

2000 3000 5000 The following gel was produced by the Sanger method of DNA sequencing. 22. Give the DNA Sequence from the gel Give the DNA TTAGACCCGATGAGCCCGCA Image: Colspan="2">Deduce the	estriction Map:	
The following gel was produced by the Sanger method of DNA sequencing. ddATP 22 Give the DNA Sequence from the gel Give the DNA TTAGACCCGATGAGCCCGCA 23 Deduce the		I
22 Give the DNA Sequence from the gel TTAGACCCGATGAGCCCGCA	he following gel was pro NA sequencing.	ddTTP ddCTP ddGTP
23 Deduce the	2 equence from the gel TAGACCCGATGAGC	=
sequence of the complementary strand.	3 equence of the compleme	

For question 24, in humans, 1 in 10,000 females have a rare sex-linked recessive genetic disorder.

- 24. _____What is the frequency of the affected males?
- **25.** If the frequency of the recessive allele is 0.2, what is the frequency of the heterozygous individuals in the population.

Examine the information concerning the paternal case. Use the evidence from the blood samples and DNA analysis to answer the questions.

PARENTAL CASE				
Blood Analysis		DNA ANALYSIS KEY		
Mother I ^A i		#1-Sample from mother's blood		
Child i i		#2-Sample from child's blood		
Possible Father #1	I ^A I ^B	#3-Sample from possible father #1		
Possible Father #2	I ^A i	#4-Sample from possible father #2		
Possible Father #3 I ^B i #5-Sample from possible fath		#5-Sample from possible father #3		

DNA ANALYSIS

1	2	3	4	5

26. _____ What is the blood type of the child? What is its genotype?

_ _

- 27. _____ What is the blood type of the mother? What is her genotype?
- **28.** _____ What are the blood types of the possible fathers?
- **29.** Based upon the blood types, which of the possible fathers **could be** the biological father of the child?
- **30.** _____ Based upon all of the evidence, which of the possible fathers is most likely the father of this child?

For question 24, in humans, 1 in 10,000 females have a rare sex-linked recessive genetic disorder.

- 24. _____ What is the frequency of the affected males? 1/100 (1/100 X 1/100 = 1/10,000)
 25. _____ If the frequency of the recessive allele is 0.2, what is the frequency of the
 - If the frequency of the recessive allele is 0.2, what is the frequency of the heterozygous individuals in the population. 1 - .2 = .8 so 2 pq = (2x 0.8X0.2) = .32

Examine the information concerning the paternal case. Use the evidence from the blood samples and DNA analysis to answer the questions.

PARENTAL CASE				
Blood Analysis		DNA ANALYSIS KEY		
Mother I ^A i		#1-Sample from mother's blood		
Child i i		#2-Sample from child's blood		
Possible Father #1	I ^A I ^B	#3-Sample from possible father #1		
Possible Father #2	I ^A i	#4-Sample from possible father #2		
Possible Father #3 I ^B i #5-Sample from possible father		#5-Sample from possible father #3		

DNA ANALYSIS

1	2	3	4	5

- **26.** <u>type O</u> ii _____ What is the blood type of the child? What is its genotype?
- 27. ____type A I^Ai ___ What is the blood type of the mother? What is her genotype?
- **28.** _ **types AB, A, B** _ What are the blood types of the possible fathers?
- **29. father's 2 & 3** ____ Based upon the blood types, which of the possible fathers **could be** the biological father of the child?
- **30.** _ father 2 ____ Based upon all of the evidence, which of the possible fathers is most likely the father of this child?