Name:	KEY	Timeslot	:KEY
		a .i	
	Answer Pag	ge: Section	ı A
1.	(a) 7		
	(b) 1.4 (solar masses)	12.	(a) 10
	(c) -7.1 \pm 0.355 (\pm indicates acceptable interval)		(b) Heavier Elements
2.	(a) 13	13.	(a) Red Giant. The Sun will reach this stage
	(b) Gravitational Wave Radiation		when it fuses all hydrogen gas into helium. (Also accept 5 ± 0.5 billion years)
3.	6, 5, 11, 10 (has to be in this order for credit)		(b) The Sun's core as a Black Dwarf
4.	(a) Mira Variables, Intrinsic (2 points)(b) Red giant (also accept AGB star)	14.	SNR G1.9+0.3, 14
	(b) Red grant (also accept AGB star)	15.	(a) 17
5.	(a) 2, Hen 3-1357 (also accept Stingray Nebula)	13.	(b) Binary star system comprising of two sun-
J.	(b) White Dwarf		like stars with almost equivalent mass
c	(A) D	16	(a) Mass
6	(a) D	16.	(a) Mass
	(b) A		(b) Chemical Composition
	(c) C	17.	(a) Globular Clusters
7.	(a) globular cluster	17.	(b) Globular : low metallicity, older, denser,
<i>,</i> .	(b) high mass/luminosity stars have evolved		comprised of tens / hundreds of thousands of
	off of the main-sequence		stars, symmetrical formation, contain more evolved stars (red giants), located in halo /
8.	(a) 3, SS Cygni		bulge of galaxy
·.	(b) 20		Open: high metallicity, younger, irregular
	(c) Accretion disk pulsates in brightness		shape, younger stars (blue giants), located in arms of spiral galaxies
9.	(a) M101 (also accept Pinwheel Galaxy)		(Having 3 correct from both categories
•	(b) SN 2011fe		merits a point. Otherwise, 0 points scored)
	(c) September 13^{th} , $2011 \pm a$ month		
	(d) -19.6 ± 0.5	18.	(a) Pulsar
			(b) Pulsar's rotational inertia increases due to the
10.	(a) NGC 1846		interior's shift to superfluid as the pulsar
	(b) Planetary Nebula (also accept White Dwarf)		cools. (Mention of phase shift in interior
	(c) Stars in NGC 1846 should all be the same		awards point)
	age. The rest of the sun-sized stars are not as		
	evolved.	19.	optical/X-ray
11	(a) 25	20	(a) Sirius A & Sirius B

(b) X-Ray

(c) Two White Dwarfs

(d) 300 ± 75 seconds

(b) Sirius B

(c) DA2

Name: KEY Tir	meslot: KEY	
---------------	-------------	--

Answer Page: Section B

Tie Breaker # 3 (team who has more on #22)

- 21. (a) $6,840,000 \pm 1,500,000$ Parsecs
 - (b) $(1.75 \pm 0.6) \times 10^{36} \text{ Watts}$
 - (c) $1,500,000 \pm 175,000$ Kelvin
 - (d) 67,000 ± 15,000 Solar Radii
 - (e) White Dwarf and Red Giant
- 22. (a) 1.92 ± 0.3
 - (b) $576000 \pm 31000 \text{ km/s}$
 - (c) $8500 \pm 850 \text{ Mpc}$
 - (d) $(1.1765 \pm .107) * 10^{-10}$ arcseconds
 - (e) 10.35 ± 0.4
- 23. (a) $11,600 \pm 500$ Kelvin
 - (b) $(1.0895 \pm 0.05) * 10^{28}$ Watts
 - (c) 1.3202 ± .066 Solar Radii
 - (d) 7.08 ± 0.35

Name: KEY Timeslot: KEY

Answer Page: Section C

24. (a) $408 \pm 8 \text{ days}$

(b) $17,000 \pm 500$ times

(c)

Tie Breaker #1 (c)

25. (a) 0.8667 ± 0.0433 solar masses

(b) 1.5955 ± 0.0798 AU

(c) From Star A: $(9.54734 \pm .4) * 10^7$ Km From Star B: $(1.4321 \pm .07) * 10^8$ Km

(d) Star A: $46.188 \pm 0.1 \text{ km/s}$ Star B: $69.282 \pm 0.1 \text{ km/s}$

26. (a) $(7.2 \pm 0.36) * 10^{47} \text{ Kg} * \text{m}^2$

(b) $(9.8 \pm 0.49) * 10^{49} \text{ Kg} * \text{m}^2$

(c) 3811.11 ± 190.55 Days

(d) 69.58 ± 3.48 Solar Luminosity

Tie Breaker #2 (team who has more on 26)