

Exploring the World of Science

Robot Tour Trial 2023 Div C

Brian Hoffman

SO Event Coach State Event Supervisor National Event Supervisor Tech Committee Member

Science Olympiad - Copyright 2022

Agenda

- Goals of Event
- Event Description
- Event Rules
 - Build
 - Track Area
 - Competition
- Location Tracking Concept
- Robot Design
- Kit Recommendations

Goals for Robot Tour

- Create a True Robot Event
 - Autonomous Operation
 - NOT Remote Controlled
- Low Cost Robot Kits (<\$60) are Competitive</p>
 - Large Availability of Robot Kits
 - Higher Cost Kits do NOT have Major Advantage
- Programming During Event Time
 - Competitors must make some programming changes after impound
- Not Complex for Event Supervisor

Event Description

- Track Location
- Start & Target Points announced after Impound
- Target Time
 - Between 40 and 70sec
- Bonus Points based on Path Taken

Example Track Shown

AGV

Auto Guided Vehicle

This Event is Based on Current Real World Tech!!!

Event Rules - Build

- Autonomous robotic vehicle to track location on track
 - Not Remote Controlled
- Powered by up to 8 AA batteries
- Must completely fit in a 30cm by 30cm space of any height
- 1/4" Dowel Round mounted to front for measurements. At least 10cm height.

Event Rules - Track

- Track Area 2m x 2m
- Start Point
 - 16 Possible Locations
 - Placed at Track
 Perimeter in Center of Grids
 - Chosen by Event Supervisor
- Target Point
 - 16 Possible Locations
 - Placed in Center of Any Grid
 - Chosen by Event Supervisor

Example Track Shown

Event Rules - Track Wooden 2" x 4" **Obstacles** Wooden 2"x4" Length 16" Up to Eight (8) 2x4s Randomly Placed by Event Supervisor on **Imagery Line** Competition Violation for touching any of the 2x4sActual Size of 2x4s 1.5" x 3.5" x 16" Obstacles can be removed for a smaller Example Track Shown penalty than touch

Event Rules - Track

Bonus Gate Zones

- Bonus Awarded for Entering Gate Zone
- Number of Gates Zones
 - ▶ 3 at Regionals
 - 4 at States
 - 6 at National
- Size 50cm by 50cm
- Marked by 2.5cm Tape

Example Track Shown

Event Rules - Competition

- Impound Requirements
 - Robot and Spare Parts
 - Robot Program (USB Drive and <u>Not</u> Laptop)
 - Competitors MUST ONLY use Impounded Program
- Setup Time: 10 Minutes
 - Initial robot setup
 - No Testing Allowed
- Track Time: 8 Minutes
 - Includes programming changes
 - Include all runs
 - Not included is Event Supervisor measurement time
 - Track Time used is recorded for use as a tie breaker

Event Rules - Competition

- Track Time ends at:
 - 2 Successful Runs OR
 - 3 Failed Runs OR
 - 8 Minute Track Time Limit Reached
 - Current Run allowed to Finish
- Failed Run is
 - Run Time reaches twice the Target Time
 - Robot exits the Track Area
 - Determined by robot outside of track boundary lines
 - Competitors ask current run to be marked as a Failed Run

Event Rules - Competition

- Run Time (Compared to Target Time)
 - Starts when robot begins to move
 - Ends when Robot Stops or is a Failed Run
 - Robot is stopped if does not move for 3 seconds; the 3 seconds is not included in run time
 - Not recorded for a Failed Run
- Gate Bonus
 - Dowel MUST enter Gate Zone first
 - Gate Zones can be entered in any order and direction.
 - Each Gate Zone may only be counted once

Robot Path is Not Defined

Competitors choose their best path

Example Tracks Shown

Practice Log & Design Log

- Practice Log & Design Log must be impounded with the Robot
- Practice Log must contain at least 10 runs with the following information
 - Target Time
 - Run Time
 - Distance from Target Point

 - Gate Zones (if used)
 At least one Robot parameter Path taken, gates, motor speed, ...
- Design Log must contain descriptions of robot hardware and all sensors that provide data used by the robot to track location

Run #	Target Time	Run Time	Distance from Target Point	Gate Zones	Example Robot Parameter
1	55	46.23	12.4	2	Motor Speed 70%
2	55	59.49	8.6	2	Motor Speed 50%
3	48	56.71	15.8	1	Motor Speed 50%
10	65	72.14	5.2	3	Motor Speed 60%

Scoring (Non-Failed Run)

Run Score =

Time Score +

Distance Score +

Gate Bonus +

Penalties

Final Score is <u>lowest</u> Run Score

Team with the <u>lowest</u> Final Score

Scoring (Failed Run)

Run Score =

750 points +

Penalties

► Final Score is lowest Run Score

Team with the <u>lowest</u> Final Score

Scoring – Time Score

Run Time < Target Time</p>

Time Score = (Target Time – Run Time) x 2

Run Time >= Target Time

Time Score = (Run Time – Target Time)

Larger Penalty for being under Target Time

Scoring – Distance Score

Robot Distance

- Point to Point Measurement from the Target Point to Robot's Dowel
 - Front Edge of Dowel is Measurement Point
- Measured to nearest 0.1cm
- 2x4s can be removed temporarily to perform measurements if required
- Distance Score = Robot Distance * 1 point/cm

Scoring – Gate Zone Bonus

Gate Zone Bonus

-15 Points for Each Zone Gate entered in any order

Entering Gate Zones lowers Run Score

A Gate Zone may only be counted once

Scoring – Run Penalties

- 50 points added for contacting 1 or more 2x4 Obstacles during a run
- 35 points added to all Run Scores when a team chooses to run with 2x4 Obstacles
- Competition Violation
 - 150 points added to each Run Score with 1 or more competition violations.
- Construction Violation
 - 300 points added to each Run Score with 1 or more construction violations

Scoring – Final Score Penalties

Log Penalty

- 25 Points for Incomplete Practice Log
- 25 Points for Incomplete Design Log
- 150 Points for Not Impounded Practice Log
- 150 Points for Not Impounded Design Log
- 200 points added to the Final Score for robot movements tested during Setup Time
- Robot Not Impounded
 - 5000 points added to each Run Score

Scoring - Example

- Target Time Robot Distance Run Time Gate Zones Entered Practices Log
- = 43s. = 21.7 cm = 58.53 sec.
- = 2
- = Both Valid & Impounded
- Time Score = 58.53 - 4315.53 = Distance Score = 21.7 x 1 pt/cm 21.7 = = 2 x - 15 Gate Zone Bonus -30.00 = = 0 0.00 Log Penalty = **Run Score** 7.23 =

TIPS & SUGGESTIONS

Building a Robot

- Event is Location Tracking and Navigation as the Robot travels from Start Point to Target Point
- Information about Location is EVERYTHING
- Sensors attached to the Robot can provide Data to track the Robot's Location

Motor/Wheel Encoders

Purpose

- Measure Linear Distance Traveled
- Complexity

Technology

Pulses from a photo sensor measure motor/wheel rotations used to calculate linear distance traveled

Costs

HC-SR04 Distance Transducer

Purpose

- Measure Distance to Object
- Complexity

- Technology
 - Uses ultrasonic sound waves to measure distance to objects
 - Simple to program

SPEED OF SOUND: v = 340 m/s v = 0.034 m/sTIME = DISTANCE/SPEED t = s/v = 20/0.034 = 588 us $s = t \ge 0.034/2$

Accelerometer/Gyroscope

Purpose

- Compass for Robot
- Complexity

- Technology
 - MPU-6050 combine a 3-axis gyroscope and a 3-axis accelerometer
 - Using software libraries to determine robot's heading
- Costs

\$\$\$\$\$ to \$\$\$\$\$

Note: - Mounting orientation for the MPU-6050 is very important.

- Make sure you select the best library for your needs.

Time of Flight Sensor

Purpose

- Measure Distance to Object
- Complexity

- Technology
 - Laser distance measurement sensor
 - The sensor can detect the "time of flight", or how long the laser light has taken to bounce back to the sensor

Costs

\$\$\$\$\$ to \$\$\$\$\$

Opinion: More expensive sensors may not give better results for this event. Whereas using several low-cost sensors could give an advantage if used correctly.

Garmin LIDAR-Lite Optical Distance Sensor

Building - Motion

4 wheel vs 2 wheel???

- 2 Wheels = Less costs and easier steering
- Moving fast is not as important
- Slower robots are easier to steer
- Most basic robot kits move fast!!

Building - Motors

Recommend DC motors with speed control

Most microcontrollers use PWM outputs

- The higher the PWM percentage then the faster the motor will rotate
- Typically DC motors need 50% or higher to start rotating

Building – Motor Gearing

- Many DC motors w/o gearing rotate at 1000 to 8000 RPMs or higher
- A Gearbox is recommended to reduce the speed to a useable level
- Higher gear reductions given better speed and steering control but at a loss of overall movement speed
- Motors shown range from \$2 to \$8 each

Encoder

Robot - Brains

- The robot needs to have its program modified during the event
- Recommend using a micro controller that is easy and quick to modify
- Determine: Does the school or competitors have access to a laptop for use during the event?

If no, more expensive robots may be required

Common Micro processors / computers

Arduino	Teensy	ESP32		
Raspberry Pi	PIC	ESP8266		
Lego	and many more			

Robot – Brains - Arduino

- Arduino is an excellent option
 - Windows / Mac / Linux
- Most robot basic kits include an Arduino
- Add-on kits available for
 - Display screens
 - Modules for easier wiring
 - And more ….
- Caution: A limited number of sensors and motors that can be connected
 - Next Slide shows Example
 - Several options exist to expand this number, but that is beyond this presentation

Ardunio UNO – Example

Pin #	Function		
0	RXD (Not Available)		
1	TXD (Not Available)		
2	Distance Echo Input		
3	Distance Trigger Output		
4			
5	Motor A Speed (PWM)		
6	Motor A Direction 1		
7	Motor A Direction 2		
8	Motor B Direction 1		
9	Motor B Direction 2		
10	Motor B Speed (PWM)		
11	Motor A Encoder		
12	Motor B Encoder		
13	LED		

Green Pin #s

Note: Diagrams are example wirings and should not be used. Consult purchased hardware's instructions for actual wiring.

Programming Tip

- Teams have a limited number of minutes to program and run their robot.
- Program should be developed to execute a list of commands that are easily modified

- 1. Forward 50cm
- 2. Left 90 Degrees
- 3. Forward 120cm
- 4. Right 90 Degrees
- 5. Forward 60cm
- 6. Left 90 Degrees
- 7. Forward 40cm
- 8. Right 180 Degrees
- 9. Forward 120cm
- 10. Right 90 Degrees
- 11. Forward 70cm
- 12. Stop

Robot Ideas

- The following robots are examples only.
- No promises on performance.
- Use at your own risk.
- Modifications should be made to improve performance and costs.

Robot #1 Approximate Cost \$64 (\$52)

6 AA Battery Holder

(2) \$7.39

- Excellent low cost starting point.
- Difficult to control at low speeds

Optional Can slow reaction time

SunFounder I2C 20x4 Display \$12.99

OSOYOO 2WD Robot Car Kit \$35.99

AND ROBOT

DAOKI Tacho Sensor (5) \$6.79

Robot #2 Approximate Cost \$60

ELEGOO UNO Project Smart Robot Car Kit \$54.99

4WD requires more motors and needs a higher level of programming skills to follow a curved path

Robot #3 **Approximate Cost \$130**

Robot #4 Approximate Cost \$60

DE ZWD ROSOT CAR STARTER AUT CAR STARTER AUT CAR STARTER AUT					****
			Upgrades to Rob	ot #1	
OSOYOO 2WD Robot Car Kit \$35.99	6 AA B (2	attery Holder 2) \$7.39			
			00.10		
	MPU-6050 Accelerometer	HC-SR04 Distance Transducer Sensor	GM9 Gear Motor 200:1 (2) \$5.75/ea	3D Printed Wheel (2) \$0.10/ea	
DAOKI Tacho Sensor (5)	Gyroscope \$5.99	ŞZ.J4			

Very good speed control for a low cost robot

\$6.79

Questions???

