1. DESCRIPTION: Teams must construct an antenna device prior to the tournament that is designed to transmit a signal at 2.4 GHz and complete a written test on the principles of electromagnetic wave propagation.

A TEAM OF UP TO: 2
IMPOUND: Yes
APPROX. TIME: 50 minutes

2. EVENT PARAMETERS:
 a. Each team may bring one three-ring binder of any size containing information in any form and from any source, attached using the available rings. Sheet protectors, lamination, tabs and labels are permitted. Participants may remove information or pages for their use during any part of the event.
 b. Each team may also bring tools, supplies, writing utensils, and two stand-alone calculators of any type for use during any part of the event. These items need not be impounded.
 c. Each team must impound their device, a device diagram, and copies of graphs and/or tables for scoring. Bonus points are given for devices impounded in a labeled box.
 d. The event supervisor will provide the testing materials listed in the COMPETITION AREA section.
 e. Participants must be able to answer questions regarding the design, construction, and operation of the device per the Building Policy found on www.soinc.org.

3. CONSTRUCTION PARAMETERS:
 a. Each team may bring one pre-constructed antenna device.
 b. The device must fit within a 15.0 cm x 15.0 cm x 15.0 cm cube during all parts of the competition and must be supported solely by the backplane and the SMA-Female connector mounted in the backplane.
 c. The device must include an SMA-Male connector that can be connected to the backplane connector.
 d. The device may be constructed of any materials except for commercial antenna parts or magnets.
 e. The device must be entirely passive; no batteries, AC power or other energy sources are permitted.
 f. The device must be designed and operated in such a way that does not damage or alter the backplane or SMA-F connector (e.g. due to excessive weight/torque, residue on the metal sheet, etc.). Devices are recommended to weigh less than 300 g.
 g. Prior to competition, teams must calibrate devices by preparing graphs/tables showing the relationship between power and distance for various device or testing setup configurations. A labeled device diagram should be included.
 i. Any number of graphs and/or data tables may be submitted but the team must indicate up to four to be used for the Chart Score, otherwise the first four provided are scored.
 ii. Graphs and/or tables may be computer generated or drawn by hand on graph paper. Each data series counts as a separate graph. A template is available at www.soinc.org.
 iii. Teams are encouraged to have a duplicate set to use, as those submitted may not be returned.

4. THE COMPETITION:
 a. The test will be given a minimum of 20 minutes to complete a written test consisting of multiple choice, true-false, completion, or calculation questions/problems.
 b. Unless otherwise requested, answers must be in metric units with appropriate significant figures.
 c. The test will consist of at least five questions from each of the following areas:
 i. The Electromagnetic Spectrum, radio waves, and EM wave propagation
 ii. Relating velocity, wavelength, and frequency for waves, with emphasis on radio waves
 iii. Common antenna designs, compare/contrast different types of antennas
 iv. Gain patterns, the radar equation, impedance, bandwidth, noise, and information
 a. Teams have a total of 5 minutes to adjust and repair their device, and make 3 connection attempts. Event Supervisors will give teams a warning at 4 minutes. Devices that do not meet the construction specs will not be allowed to be tested until brought into spec.
 b. Once the 5 minute testing period begins, teams may select a starting distance (at 50.0 cm intervals) at which to have the Event Supervisor place the receiver unit.
 c. Prior to each connection attempt, teams may connect, disconnect, modify or adjust the device and the position of the device and metal sheet relative to the transmitter. Teams must not move the transmitter. During this process, teams may ask the supervisor to confirm if the receiver has established a connection with the transmitter. The supervisor must provide only a yes or no response. The team may not ask the supervisor again during that attempt after receiving a yes response.
 d. Once a team is ready for testing, they must step at least 5 feet away from the device, and notify the Event Supervisor.
e. The Event Supervisor will then measure the average dBm reading over a 10 second period using the receiver unit. Modifications are not allowed during the measurement period.

f. Connection with the receiver is defined by an average (over 10 seconds) measured dBm reading equal to or higher than the threshold dBm reading obtained by the Supervisor’s 3.1 cm monopole antenna.

g. If connection was achieved, the team may elect to move the receiver to a farther distance for their next attempt. If connection was not achieved, they may elect to move the receiver to a closer distance for their next attempt but must not be allowed to move to a farther distance for their next attempt.

h. Event Supervisors must record the distance of all attempts and whether the connection was successful.

i. Teams that achieve connection at the longest possible distance (as determined by the competition venue) must have their average dBm reading recorded as a bonus.

j. The Supervisor will review with the team the Part II data recorded on their scoresheet.

k. Teams filing an appeal regarding Part II must leave their device in the competition area.

5. COMPEITION AREA:

a. Example setups are provided on the event page at www.soinc.org

b. The Event Supervisor will provide the testing materials listed below, which will be the same for all teams:
 i. A transmitter that supplies a 2 mW, 2.4 GHz, 802.15.4 encoded signal (e.g. a standard WiFi access point / router with external antennas)
 ii. A ~30.0 cm x ~30.0 cm x ~0.05 cm metal sheet (the backplane) attached to a tripod with an SMA-Female connector in the middle
 iii. Adapters and an antenna cable to connect the transmitter to the metal sheet
 iv. A receiver that can display the received power in dBm with at least -80 dBm sensitivity. (Acrylic WiFi Home is recommended for PC machines. KisMac is recommended for Mac machines.)
 v. A 3.1 cm monopole antenna for setting the connection threshold dBm value

c. Tournament personnel are encouraged to provide a long space for device testing and share room specifications with all participants at least two weeks before the competition.

d. The Event Supervisor will set up the transmitter and receiver on surfaces that are of equal height and at least 50.0 cm above the floor. Once positioned, the setup must stay the same for all teams.

e. Prior to the start of competition, the Event Supervisor will test their provided 3.1 cm monopole antenna at a distance of 3.0 m to determine the connection threshold dBm reading.

6. SCORING:

a. Final Score (FS) = ES + AS + CS + IB + MB. The maximum possible FS is 100 points. A scoring spreadsheet is available at www.soinc.org.

b. Exam Score (ES) = (Part I score / highest Part I score for all teams) x 45 points

c. Antenna Score (AS) = (greatest successful distance / greatest successful distance for all teams) x 38 points

d. Chart Score (CS) - One of the submitted graphs/tables, selected by the Event Supervisor, is scored using i., ii., and iii., described below for a maximum of 6 points. Four (4) additional CS points are available via items iv. and v. Partial credit may be given.
 i. 2 points for including data spanning at least 5m distance
 ii. 2 points for including at least 10 data points in each data series
 iii. 2 points for proper labeling (e.g. title, team name, units)
 iv. 0.5 points for each distinct graph or table turned in (up to 2 points total)
 v. 2 points for including a labeled device diagram

e. Impound Bonus (IB) = 3 points if device impounded in a box labeled with team name & number

f. Max Bonus (MB) = If multiple teams achieve connection at the maximum distance, the team with the highest dBm reading at the maximum distance will receive a bonus of four points.

g. AS must be zero if a team has no successful connection attempts, is disqualified for unsafe operation, or fails to bring a device. Such teams will be allowed to compete in Part I.

h. If any CONSTRUCTION violation(s) are corrected during the competition block, or if the team misses impound, their connection distance will be multiplied by 0.7 when calculating AS.

i. A team violating any COMPETITION rules during a successful attempt will have their connection distance for that attempt multiplied by 0.9 when calculating AS.

j. Tie breakers: 1st - Best AS; 2nd - Best dBm at max distance; 3rd – # successful connections; 4th - specific test questions

Recommended Resources: All reference and training resources are available on the Official Science Olympiad Store and Website at http://www.soinc.org
GENERAL RULES, CODE OF ETHICS, AND SPIRIT OF THE PROBLEM

The goal of competition is to give one’s best effort while displaying honesty, integrity, and good sportsmanship. Everyone is expected to display courtesy and respect - see Science Olympiad Pledges. Teams are expected to make an honest effort to follow the rules and the spirit of the problem (not interpret the rules so they have an unfair advantage). Failure by a participant, coach, or guest to abide by these codes, accepted safety procedures, or rules below, may result in an assessment of penalty points or, in rare cases, disqualification by the tournament director from the event, the tournament, or future tournaments.

1. Actions and items (e.g., tools, notes, resources, supplies, electronics, etc.) are permitted, unless they are explicitly excluded in the rules, are unsafe, or violate the spirit of the problem.

2. While competing in an event, participants may not leave without the event supervisor’s approval and must not receive any external assistance. All electronic devices capable of external communication as well as calculator applications on multipurpose devices (e.g., laptop, phone, tablet) are not permitted unless expressly permitted in the event rule or by an event supervisor. Cell phones, if not permitted, must be turned off. At the discretion of the event supervisor, participants may be required to place their cell phones in a designated location.

3. Participants, coaches and other adults are responsible for ensuring that any applicable school or Science Olympiad policy, law, or regulation is not broken. All Science Olympiad content such as policies, requirements, clarifications/changes and FAQs on www.soinc.org must be treated as if it were included in the printed rules.

4. All pre-built devices presented for judging must be constructed, impounded, and operated by one or more of the 15 current team members unless stated otherwise in the rules. If a device has been removed from the event area, appeals related to that device will not be considered.

5. Officials are encouraged to apply the least restrictive penalty for rules infractions - see examples in the Scoring Guidelines. Event supervisors must provide prompt notification of any penalty, disqualification or tier ranking.

6. State and regional tournament directors must notify teams of any site-dependent rule or other rule modification with as much notice as possible, ideally at least 30 days prior to the tournament.

COVID-19 PANDEMIC RULES MODIFICATIONS

The COVID-19 pandemic requires that some general modifications be made to the Event Rules listed in this manual in order to permit Science Olympiad competitions to continue in a way that reflects best public health, disease prevention, and personal safety practices. The modifications listed here will be in effect for all Science Olympiad competitions, regardless of level (e.g., Invitational, Regional, State, National), or type (e.g., In-Person, Satellite SO, mini SO). As the pandemic is evolves, these modifications may be amended or rescinded according to local conditions. If changes are made, the Tournament Director for the affected tournament will make an announcement to all participating teams as soon as possible.

1. If not already allowed, each individual participant can have a personal set of reference materials (e.g., binders, single sheets of paper), calculator, or other academic resource as specified in the specific event rule for use during the competition to facilitate social distancing, isolation, and to prevent resource sharing. Personal sets of resource materials must meet all the criteria established in the specific event rule. This does not apply to Recommended Lab Equipment for Division B or Division C Chemistry Events or tool kits for Build Events.

2. Given local conditions, participants may not be able to be in the same location as their partner during competition. Tournaments will allow designated partners to compete from separate locations and competing teams will only need one device for Build or Hybrid with Build Events.

3. At the discretion of the Tournament Director, portions of Hybrid Events containing hands-on activities as well as Build and Lab Events may be dropped from the tournament or be conducted as trial events.

4. At the discretion of the Tournament Director and Event Supervisors, completion time may be used as a tiebreaker for Core Knowledge and other events where a written or online test is used.
Each team may bring any or all of the items listed below for use in Division C Chemistry Events requiring laboratory equipment. Teams not bringing these items will be at a disadvantage as Event Supervisors will not provide Recommended Lab Equipment. A penalty of up to 10% may be given if a team brings prohibited lab equipment to the event.

<table>
<thead>
<tr>
<th>Item & Expected Use</th>
<th>Likely to be used in:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chemistry</td>
</tr>
<tr>
<td>Box - Containing all of the kit materials</td>
<td>X</td>
</tr>
<tr>
<td>10 ml Graduated Cylinder - Measuring volumes</td>
<td>X</td>
</tr>
<tr>
<td>25 ml Graduated Cylinder - Measuring volumes</td>
<td>X</td>
</tr>
<tr>
<td>100 ml Graduated Cylinder - Measuring volumes</td>
<td>X</td>
</tr>
<tr>
<td>50 ml Beakers - Doing reactions, developing chromatograms</td>
<td>X</td>
</tr>
<tr>
<td>100 ml Beakers - Doing reactions, developing chromatograms</td>
<td>X</td>
</tr>
<tr>
<td>250 ml Beakers - Doing reactions, developing chromatograms</td>
<td>X</td>
</tr>
<tr>
<td>400 ml Beakers - Doing reactions, developing chromatograms</td>
<td>X</td>
</tr>
<tr>
<td>50 ml Erlenmeyer Flasks - Doing reactions</td>
<td>X</td>
</tr>
<tr>
<td>125 ml Erlenmeyer Flasks - Doing reactions</td>
<td>X</td>
</tr>
<tr>
<td>250 ml Erlenmeyer Flasks - Doing reactions</td>
<td>X</td>
</tr>
<tr>
<td>Test Tubes - Mix Chemicals, heat chemicals</td>
<td>X</td>
</tr>
<tr>
<td>Test Tube Brush - Clean Test Tubes</td>
<td>X</td>
</tr>
<tr>
<td>Test Tube Holder - Holds test tubes for heating</td>
<td>X</td>
</tr>
<tr>
<td>Test Tube Rack - Hold Test Tubes</td>
<td>X</td>
</tr>
<tr>
<td>Spot Plates - For semi-micro scale reactions, testing solubility, pH</td>
<td>X</td>
</tr>
<tr>
<td>Petri Dishes - Doing reactions, developing chromatograms</td>
<td>X</td>
</tr>
<tr>
<td>Slides - To put hairs, crystals, or fibers on for use with a microscope</td>
<td>X</td>
</tr>
<tr>
<td>Cover Slips - To cover & prevent items from coming off slides</td>
<td>X</td>
</tr>
<tr>
<td>Droppers - Add small amounts of liquids to reactions</td>
<td>X</td>
</tr>
<tr>
<td>Spatulas or spoons - Getting small amounts of solids out of containers</td>
<td>X</td>
</tr>
<tr>
<td>Metal Tongs, Forceps, or Tweezers – Holding & retrieving objects</td>
<td>X</td>
</tr>
<tr>
<td>Stirring Rods - Stirring mixtures</td>
<td>X</td>
</tr>
<tr>
<td>Thermometer - Determining the temperature of a solution</td>
<td>X</td>
</tr>
<tr>
<td>pH or Litmus paper - Test acidity or alkalinity of solution</td>
<td>X</td>
</tr>
<tr>
<td>Hand Lens - Magnification of small items for identification</td>
<td>X</td>
</tr>
<tr>
<td>Flame Loop – For identification of ions in a compound</td>
<td>X</td>
</tr>
<tr>
<td>Cobalt Blue Glass – To filter out any sodium that might contaminate flame test from hands</td>
<td>X</td>
</tr>
<tr>
<td>Filter Paper - Filter solids from liquids</td>
<td>X</td>
</tr>
<tr>
<td>Funnel - Hold Filter Paper</td>
<td>X</td>
</tr>
<tr>
<td>9V battery - Electrolysis</td>
<td>X</td>
</tr>
<tr>
<td>Alligator Clip Wires - Connecting meters to metals</td>
<td>X</td>
</tr>
<tr>
<td>Nail - Electrolysis</td>
<td>X</td>
</tr>
<tr>
<td>Piece of Cu metal - Electrolysis</td>
<td>X</td>
</tr>
<tr>
<td>Piece of Zn metal - Electrolysis</td>
<td>X</td>
</tr>
<tr>
<td>Multimeter - Measuring current, voltage, and resistivity</td>
<td>X</td>
</tr>
<tr>
<td>9V or less Battery Conductivity Tester - Determining ionic strength of solution</td>
<td>X</td>
</tr>
<tr>
<td>Calipers-mechanical, not digital - Measuring lengths very precisely</td>
<td>X</td>
</tr>
<tr>
<td>Paper Towels - Cleaning</td>
<td>X</td>
</tr>
<tr>
<td>Pencil - Writing, Marking Chromatogram</td>
<td>X</td>
</tr>
<tr>
<td>Ruler - Measuring lengths</td>
<td>X</td>
</tr>
<tr>
<td>Magnets – For extraction and identification of iron filings</td>
<td>X</td>
</tr>
</tbody>
</table>
The following document was prepared to offer some guidance to teams as they select calculators for use in different Science Olympiad events. By no means are the calculators listed here inclusive of all possible calculators; instead they are offered as common examples. The decisions of the event supervisors will be final.

Class I - Stand-alone non-graphing, non-programmable, non-scientific 4-function or 5-function calculators

are the most basic type of calculators and often look like the one shown to the right. These calculators are limited to the four basic mathematics functions and sometimes square roots. These calculators can often be found at dollar stores.

Class II - Stand-alone non-programmable, non-graphing calculators

look like the calculator to the right or simpler. There are hundreds of calculators in this category but some common examples include: CASIO FX-260, Sharp EL-501, and TI-30X.

Class III- Stand-alone, programmable, graphing calculators and stand-alone non-graphing, programmable calculators, often look like the calculator shown on the right. Some examples are: Casio 975 0/9850/9860, HP 40/50/PRIME, and TI 83/84/89/NSPIRE/VOYAGE.

To identify a stand-alone non-graphing, programmable calculators look for the presence of the ‘EXE’ button, the ‘Prog’ button, or a ‘file’ button. Examples include but are not limited to: Casio Super FXs, numerous older Casio models, and HP 35S. A calculator of this type with the buttons labeled is shown to the right.

Class IV - Calculator applications on multipurpose devices (e.g., laptop, phone, tablet, watch) are not allowed unless expressly permitted in the event rule.
This resource was created to help teams comply with the Science Olympiad Policy on Eye Protection adopted on July 29, 2015 and posted on the Science Olympiad Website (soinc.org).

Participant/Coach Responsibilities: Participants are responsible for providing their own protective eyewear. Science Olympiad is unable to determine the degree of hazard presented by equipment, materials and devices brought by the teams. Coaches must ensure the eye protection participants bring is adequate for the hazard. All protective eyewear must bear the manufacturer’s mark Z87. At a tournament, teams without adequate eye protection will be given a chance to obtain eye protection if their assigned time permits. If required by the event, participants will not be allowed to compete without adequate eye protection. This is **non-negotiable.**

Corresponding Standards: Protective eyewear used in Science Olympiad must be manufactured to meet the American National Standards Institute (ANSI) standard applicable at its time of manufacture. The current standard is ANSI/ISEA Z87.1-2015. Competitors, coaches and event supervisors are not required to acquire a copy of the standard. The information in this document is sufficient to comply with current standards. Water is not a hazardous liquid and its use does not require protective eyewear unless it is under pressure or substances that create a hazard are added.

Compliant Eyewear Categories: If an event requires eye protection, the rules will identify one of these three categories. Compliance is simple as ABC:

CATEGORY A
- Description: Non-impact protection. They provide basic particle protection only
- **Corresponding ANSI designation/required marking:** Z87
- **Examples:** Safety glasses; Safety spectacles with side shields; and Particle protection goggles (these seal tightly to the face completely around the eyes and have direct vents around the sides, consisting of several small holes or a screen that can be seen through in a straight line)

CATEGORY B
- Description: Impact protection. They provide protection from a high inertia particle hazard (high mass or velocity)
- **Corresponding ANSI designation/required marking:** Z87+
- **Example:** High impact safety goggles

CATEGORY C
- Description: Indirect vent chemical/splash protection goggles. These seal tightly to the face completely around the eyes and have indirect vents constructed so that liquids do not have a direct path into the eye (or no vents at all). If you are able to see through the vent holes from one side to the other, they are **NOT** indirect vents.
- **Corresponding ANSI designation/required marking:** Z87 (followed by D3 is the most modern designation but, it is not a requirement)
- **Example:** Indirect vent chemical/splash protection goggles

Examples of Non-Compliant Eyewear:
- Face shields/visors are secondary protective devices and are not approved in lieu of the primary eye protection devices below regardless of the type of vents they have.
- Prescription Glasses containing safety glass should not be confused with safety spectacles. “Safety glass” indicates the glass is made to minimize shattering when it breaks. Unless these glasses bear the Z87 mark they are not approved for use.

Notes:
1. A goggle that bears the Z87+ mark and is an indirect vent chemical/splash protection goggle will qualify for all three Categories A, B & C
2. VisorGogs do not seal completely to the face, but are acceptable as indirect vent chemical/splash protection goggles